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Abstract
We develop an empirical interatomic potential model for the gold–silicon binary system that is
fitted to the experimental phase diagram. The model is constructed on the basis of the modified
embedded-atom-method formalism and its binary phase diagram is computed by efficient free
energy methods. The eutectic temperature and eutectic composition of the model match well
with the experimental values. We expect the model to be useful for atomistic simulations of
gold-catalyzed growth of silicon nanowires.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The catalyzed growth of semiconductor nanowires (NWs) from
gold nanoparticles via the vapor–liquid–solid (VLS) mecha-
nism has been the subject of intensive research worldwide,
due to their potential applications in nanotechnology [1, 2]
and the opportunity to understand fundamental mechanisms
of crystal growth at the nanoscale [3–5]. Si NW devices are
especially desirable due to their potential compatibility with
the existing silicon-based integrated circuit technology [6].
However, the integration of NW components into working
devices requires a high degree of control that is still lacking,
and many fundamental questions concerning NW nucleation
and growth remain to be answered. The VLS mechanism of
NW growth has been investigated using continuum theories
of crystal growth [3, 7, 8]. While this approach succeeded in
elucidating certain features of NW growth, it is still based on a
phenomenological model. Fundamental kinetic relationships,
such as the interface growth velocity as a function of the
chemical potential difference, only appear as fitting parameters
in the model. The question of how these kinetic relationship
are affected by the small length scale of the NWs is beyond
the scope of the continuum theories. The same can be said
about the detailed mechanisms and the rate of NW nucleation,
in which thermal fluctuation is expected to play an important
role.

Atomistic simulations, such as molecular dynamics and
Monte Carlo ones, should be able to probe the NW nucleation
and growth processes in their full mechanistic detail. Currently,
the progress in this direction has been hindered by two major
challenges. First, we need an interatomic potential model

that can accurately describe the interaction between gold and
silicon atoms and remain computationally efficient. Second,
we need advanced algorithms to extend the timescale of
conventional simulation techniques (∼1 ns) to experimentally
relevant timescales (∼1 s). In this paper, we address the
first challenge by providing a new gold–silicon interatomic
potential model that, for the first time, has been fitted to the
binary phase diagram.

Because the number of atoms that are actively involved
in the nucleation and growth of NWs easily exceeds a
thousand, ab initio models become prohibitively expensive.
Consequently, most of the atomistic simulations here would
be based on empirical potential models, which can be fitted
to ab initio or experimental data. While many empirical
potential models already exist for pure gold and pure silicon,
it is challenging to develop a model that describes the
interaction between gold and silicon atoms. Being a face-
centered-cubic (FCC) metal, gold can be well described by the
embedded-atom-method (EAM) potentials [9], which contain
a function that describes the energy required to embed an
atom in the background electron density generated by its
neighbors. Unfortunately, the EAM model does not work
well for covalently bonded semiconductors such as silicon.
Empirical models for silicon, such as the Stillinger–Weber [10]
and Tersoff [11] ones, usually include terms that depend on the
angles between two bonds for capturing the directionality and
saturation of covalent bonds. Therefore, a gold–silicon model
must be flexible enough to be able to describe both metallic
and covalent bonds within the same framework.

A promising theoretical framework is the modified
embedded-atom-method (MEAM), which extends EAM by
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accounting for the angular distribution of background electron
densities [12–14]. As a result, MEAM has been used
to build models for many metals, semiconductors, and
binary alloys [14–17]. The MEAM model for pure Si
successfully describes the change of the coordination of Si
atoms from fourfold to sixfold at melting [18], while the
MEAM models for pure metals correctly capture the trend
of surface energy [19, 20] and surface segregation [21, 22].
Therefore, in this work, we build the gold–silicon potential
on the basis of the MEAM formalism. In order to be
useful for NW growth studies, the potential needs to correctly
capture the thermodynamic driving forces of crystallization.
Hence we fit the potential to the experimental binary phase
diagram, which is not done for most of the existing potential
models in the literature. There have been previous studies
on the development of EAM potentials consistent with the
thermodynamics of the solid phases [23, 24]. The methods
employed in these studies are not directly applicable to the
fitting of the solid–liquid phase boundaries, which is the main
focus of this paper.

There has been an earlier attempt to develop a MEAM
gold–silicon potential [25, 26]. Unfortunately, we were
unable to reproduce the published data. Hence we re-develop
the MEAM potential here. Another attempt to construct a
gold–silicon potential is to use EAM and Tersoff models to
describe the interaction among gold atoms and silicon atoms,
respectively, and to mix the two functional forms in an intuitive
way to model gold–silicon interactions [27]. Because the
phase diagrams for these two potential models have not been
calculated, it is difficult to assess whether they are suitable
for modeling the VLS growth of NWs. In preparation for
this work, we have benchmarked the melting point and latent
heat of the original MEAM potentials for pure gold and
silicon, and adjusted the potentials to accurately reproduce
the experimental values [28]. On the basis of these improved
models, the remaining task amounts to constructing the cross-
potential of gold and silicon. The fitting of the cross-potential
to experimental phase diagrams is enabled by efficient free
energy methods for rapidly calculating the phase diagram for a
given candidate potential model.

The paper is organized as follows. In section 2, we
present the functional form of our MEAM model for the gold–
silicon system and the general procedure for determining its
parameters. In section 3, we present our free energy methods
used to compute the binary phase diagram from atomistic
simulations. A brief summary is given in section 4. For
completeness, we summarize the adjustments to the original
MEAM potential for pure Au and pure Si [28] in appendix A.
Appendix B contains a further benchmark of the Au–Si cross-
potential, by comparing its predictions with ab initio data.

2. The MEAM model for gold and silicon

2.1. The functional form

The MEAM model describes the potential energy of a
collection of atoms located at ri, i = 1, . . . , N , using the

following equation:

V ({ri}) =
N∑

i=1

F(ρ̄i ) +
N−1∑

i=1

N∑

j=i+1

Si jφi j(|ri − rj|) (1)

where F is the embedding function, ρ̄i is the background
electron density at ri, Si j is a multi-body screening factor and
φi j is the pair potential of atoms i and j . The pair potential
function φi j(r) is usually not given explicitly. Instead, it
is defined as the function that, when combined with the
embedding function, reproduces the universal equation of state
(EOS) [31] for the chosen reference crystal structure. While
the above functional form is similar to that of the embedded-
atom-method (EAM), MEAM has two main extensions. First,
the calculation of the background electron density ρi in MEAM
accounts for the spatial arrangements of the neighboring atoms,
in addition to their distance to atom i . Second, the range of the
pair potential is cut off by a multi-body screening function Si j

that depends on the locations of atoms k that are neighbors of
both atoms i and j . The details of the MEAM formalism are
well described in the literature [14].

The pair potential function φi j depends on the species of
the i– j atomic pair. The pair potential of two atoms of the
same species is determined from the chosen EOS function
for a reference crystal structure of that species. Here the
reference structure for pure Si is a diamond-cubic (DC) crystal
and that for pure gold is an FCC crystal. The EOS for these
two reference structures have been adjusted to better fit the
experimental melting temperature and latent heat of pure Si
and Au [28]. To avoid ambiguity, we give a short summary on
the improved MEAM potential for pure Au and pure Si [28]
used in this work in appendix A.

For the Au–Si cross-potential, we choose the B1 structure
as the reference structure. This is a hypothetical alloy structure
because in the solid state the solubility of Au in Si (and vice
versa) is very low. The EOS function used for the B1 crystal
structure is

Eu(r) = −Ec

(
1 + a∗ + γ

r
· a∗3

)
exp(−a∗) (2)

with a∗ =
(

9 �B

Ec

)1/2 (
r

re
− 1

)
(3)

where r is the nearest-neighbor distance, Ec is the cohesive
energy, re is the equilibrium nearest-neighbor distance, � is
the atomic volume, and B is the bulk modulus of the reference
structure. γ is an adjustable parameter present to provide
additional flexibility [25].

2.2. Determining the parameters

We determine the parameters of the Au–Si cross-potential
in three steps. First, we perform ab initio calculations of
the hypothetical B1 alloy structure to determine the cohesive
energy Ec, equilibrium nearest-neighbor distance re and bulk
modulus B . Several MEAM parameters are determined
by fitting to these values, after adjusting for the known
differences between ab initio and experimental data. Second,
the substitutional impurity energies of Si in FCC Au and Au in
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Table 1. Equilibrium lattice constant a, bulk modulus B, cohesive
energy Ec, and cubic elastic constants C11 and C44 for the DC
structure of Si, FCC structure of Au, and B1 structure of Au–Si. For
pure Si and Au, the differences between the experimental and ab
initio values are listed in the column labeled ‘offset’. Their average is
the expected ‘offset’ value for the hypothetical B1 structure. The
values marked with ∗ are the ab initio values plus the correction
terms given in the ‘offset’ column. The last column is what the
MEAM model is fitted to or predicts.

Material Experiment DFT/LDA Offset MEAM

a (Å) Si (DC) 5.431 5.390 −0.041 5.431
Au (FCC) 4.070 4.068 −0.005 4.073
Au–Si (B1) 5.184∗ 5.161 −0.023 5.400

B (GPa) Si (DC) 98 96 2 98
Au (FCC) 180 186 −6 180
Au–Si (B1) 127∗ 129 −2 127

Ec (eV) Si (DC) 4.63 5.976 −1.346 4.63
Au (FCC) 3.93 4.387 −0.457 3.93
Au–Si (B1) 4.155∗ 5.057 −0.902 4.155

C11 (GPa) Si (DC) 164 162 2 164
Au (FCC) 202 217 −15 202
Au–Si (B1) 303∗ 310 −6 320

C44 (GPa) Si (DC) 76 105 −29 76
Au (FCC) 45 47 −2 45
Au–Si (B1) −35∗ −19 −15 14

DC Si are computed ab initio and the data are used to adjust
the electron density scaling factors ρAu

0 and ρSi
0 . Third, other

potential parameters are adjusted from their default values
so that the predicted binary phase diagram will reproduce
the experimental diagram as accurately as possible. The
parameters adjusted in the third step include γ in the EOS
function of the alloy structure, and angular cut-off parameters
Cmin(i, j, k) in the multi-body screening function Si j . The first
two steps are described in this section. The method used to
compute the binary phase diagram is described in section 3.

Ab initio calculations are performed on the basis of the
density functional theory (DFT) using VASP [29]. We employ
the ultrasoft pseudopotentials [30] within the local density
approximation, with plane-wave expansion up to a cut-off
energy of 400 eV. A FCC (DC) unit cell consisting of four
(eight) atoms is used for Au (Si). A B1 unit cell consisting
of four Au atoms and four Si atoms is used for the solid alloy
with B1 structure. For all cases, 15 × 15 × 15 k-points are
used with the Monkhorst–Pack scheme. The total energy was
converged within 10−4 eV. The results for the DC crystal of
Si, the FCC crystal of Au, and the hypothetical B1 structure of
Au–Si are given in table 1.

Experimental data exist for crystals of pure Si and pure
Au. The differences between experimental and ab initio data
are listed in the column labeled ‘offset’. This difference must
be accounted for because existing MEAM models have been
fitted to experiments instead of ab initio data. The correction to
the ab initio data for the hypothetical B1 structure is obtained
by averaging the differences between experimental and ab
initio data for pure Si and Au. The data after this correction are
marked with ∗ in table 1. These are the data that the MEAM
model is fitted to, or should be compared against. We note that
this adjustment of the VASP data is not unique and could lead

Table 2. MEAM and ab initio (DFT/LDA) predictions of impurity
energies. E1 is the energy needed to substitute an atom in an FCC Au
crystal with a Si atom. E2 is the energy needed to substitute an atom
in a DC Si crystal with a Au atom.

MEAM DFT/LDA

E1 (eV) 0.636 0.634
E2 (eV) 3.968 1.553

to errors. The parameters re, Ec and α ≡ √
9�B/Ec in the

EOS of the B1 reference structure are easily obtained with this
approach. We note that we intentionally fit the lattice constant
of the B1 structure to a larger value of a = 5.400 Å eV than the
adjusted ab initio data (5.184 Å) (see appendix B), because it
gives rise to better agreement with experiments for the binary
phase diagram.

The electron density scaling factors, ρAu
0 and ρSi

0 , do not
affect the energy of pure crystals but influence the interaction
between Au and Si atoms. Because only the ratio of the

electron density scaling factors, ρAu
0

ρSi
0

, is important, we have a

single parameter to fit the two dilute solution energies. The
ratio is adjusted to produce reasonable substitutional impurity
energies, i.e. the energy E1 for replacing a Au atom in the FCC
crystal by a Si atom, and the energy E2 for replacing a Si atom
in the DC crystal by a Au atom. The MEAM and ab initio
results for the impurity energies are listed in table 2. It shows

that our choice of ρAu
0

ρSi
0

is the result of a compromise between

E1 and E2, because we cannot fit both of them accurately. As
a result, only E1 is fitted while E2 is overestimated. This
disagreement of the MEAM result can be due to either the
adjustment of VASP data introduced in table 1 or inaccuracies
in the MEAM formalism. Nonetheless, the MEAM predicts
very low solubility of Si in Au (<1.3%) and Au in Si (<10−6)
in the solid phase, consistent with experimental measurements
of <2% and <2 × 10−4 [37].

The last step is to fine-tune the potential by adjusting
the parameter γ in the EOS function (for the B1 structure),
and the cut-off parameters Cmin(i, j, k) in the multi-body
screening function to fit the experimental binary phase diagram
as closely as possible. Because the elastic constants of the
B2 structure, one of the benchmarks for our potential model
(see appendix B), are highly sensitive to Cmin(1, 1, 2) and
Cmin(2, 2, 1), we use only γ , Cmin(1, 2, 1), and Cmin(1, 2, 2)

when adjusting the free energy of the liquid alloy. Without
any correction to γ , the free energy of mixing of liquid is
too high and so is the eutectic temperature. As the binding
energy of Au–Si is smaller than the average of the Au–
Au and Si–Si binding energies, we increase γ to make the
Au–Si cross-potential more repulsive, in order to reduce the
free energy of mixing for liquid for the entire composition
range. Cmin(1, 2, 1) and Cmin(1, 2, 2) are adjusted to change
the multi-body screening effects selectively. Decreasing
Cmin(1, 2, 1) (the factor of screening of Au–Si by Au) lowers
the Au-rich part of liquid free energy because it reduces the
effects of screening by Si atoms on Au–Au interactions. In the
same way, we can increase Cmin(1, 2, 2) to raise the Si-rich part
of the liquid free energy. We repeated these procedures until
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Table 3. Parameters for the Au–Si MEAM cross-potential using B1
as the reference structure. Cmin(i, j, k) are cut-off parameters in the
multi-body screening function. They describe the effect on the
interaction between atoms of type i and j of screening by their
common neighbor of type k, where i, j, k = 1 (Au) or 2 (Si). The
same Cmax(i, j, k) is used for every combination of i, j, k.

Ec re α
ρSi

0
ρAu

0
Cmax

4.155 2.700 5.819 1.48 2.8
Cmin(1, 1, 2) Cmin(1, 2, 1) Cmin(1, 2, 2) Cmin(2, 2, 1) γ
1.9 0.95 1.85 1.0 0.26

we obtained a binary phase diagram and free energy of mixing
close to the experimental ones. The resulting parameters for
the MEAM Au–Si cross-potential are summarized in table 3.

The binary phase diagram of the resulting MEAM
potential is shown in figure 1, together with the experimental
phase diagram. The MEAM potential successfully captures the
eutectic behavior. The eutectic temperature (Te = 629 K)
matches well with the experimental value (634 K). The
eutectic composition (xe = 0.234) also agrees well with the
experimental value (0.195). The boundary of the Au-rich solid
phase is not shown in the experimental phase diagram [37], but
it is known that the maximum solubility of Si in Au is less than
2%, which is consistent with our value of 1.3%. We are not
able to remove the slight offset of the liquidus curve for the
Au-rich branch. This seems to be a limitation of the functional
form of the MEAM potential used in this work. Additional
benchmark data for the potential are presented in appendix B.
The method used for computing the binary phase diagram for
a given interatomic potential model is presented in section 3.

3. Construction of the binary phase diagram

To compute the Au–Si binary phase diagram, we need the
Gibbs free energy (per atom) as a function of temperature
T and composition x = xSi for three phases: (1) FCC Au
crystal with Si impurities GFCC, (2) DC Si crystal with Au
impurities GDC, and (3) liquid Au–Si alloy G liq. At a given
temperature, the range of stability on the composition axis for
each phase and their mixtures is determined by the common
tangent construction.

The free energy at a given temperature is obtained by
the adiabatic switching method [32], which computes the free
energy difference between the system and a reference whose
free energy is known analytically. The change of free energy as
a function of temperature is then computed using the reversible
scaling method [33]. We have used these methods to compute
the free energy of single-component systems (in both solid and
liquid phases) and determined their melting points [34]. In the
following, we will focus on the extra complexities caused by
the binary systems, such as the configurational entropy.

3.1. Free energy of a solid with impurities

The solid free energies of pure Au (FCC) and pure Si (DC)
can be computed using the method described earlier [34].
These correspond to GFCC(x = 0, T ) and GDC(x = 1, T ),

Figure 1. The binary phase diagram of Au–Si. The MEAM
prediction is plotted as a thick line and the experimental phase
diagram is plotted as a thin line. L corresponds to the liquid phase.
Au(s) and Si(s) correspond to the Au-rich and Si-rich solid phases,
respectively.

respectively. In the calculation of GFCC and GDC as a function
of x , we notice that the solubility in the solid phase for both Si
in Au and Au in Si is very low. This means that we only need
to know GFCC(x, T ) in the vicinity of x = 0. Similarly, we
only need to know GDC(x, T ) in the vicinity of x = 1. In the
following, we describe our approach for obtaining GFCC(x, T ).
GDC(x, T ) can be obtained in a similar way.

For an FCC Au crystal containing a very low
concentration of Si impurities (x � 1), it is reasonable to
assume that the impurities are not interacting with each other.
In this limit, the free energy per atom of the crystal can be
approximated by [35]

GFCC(x, T ) ≈ GFCC(x = 0, T )+x �gimp(T )−T smix(x) (4)

where �gimp is the free energy of a single impurity, in which
the configurational entropy is ignored, i.e. only the vibrational
entropy is included. smix = −kB[x ln x + (1 − x) ln(1 − x)] is
the configurational entropy of mixing.

We compute �gimp in equation (4) using a simulation cell
containing N − 1 = 499 Au atoms and one Si atom under
periodic boundary conditions (PBC). We label this simulation
cell as Cell 1 and let G1 be its free energy. G1 at a given
temperature (T0 = 254 K) is3 computed by adiabatically
switching [32] the system to its harmonic approximation,
whose free energy is known analytically [34]. G1 as a function
of temperature is then computed by the reversible scaling
method [33]. Similarly, we compute the free energy G0 as a
function of temperature, for a simulation cell containing 500
Au atoms. The free energy of the impurity is simply

�gimp(T ) = G1(T ) − G0(T ) + kBT ln N. (5)

The kBT ln N term is added to cancel the configurational
entropy contribution in G1(T ).4 Figure 5(a) plots GFCC(x, T )

3 To improve accuracy, we also performed an independent calculation at
T0 = 629 K.
4 The configurational entropy of mixing in Cell 1 is S1

mix = kB ln N !
(N−1)!1! =

kB ln N .
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Figure 2. The Gibbs free energy �gimp(T ) and enthalpy �h imp(T ).
(a) A Si impurity within a Au crystal. (b) A Au impurity within a Si
crystal.

and GDC(x, T ) as a function of x at T = 700 K, obtained using
the method described above.

In several studies regarding binary phase diagram calcu-
lations [23, 24], it is common to approximate �gimp(T ) =
�himp − T �Svib by the enthalpy �himp, neglecting the
vibrational entropy contribution in �gimp(T ). However, we
find that the contribution from −T �Svib is significant for
the Au–Si system, affecting the phase diagram significantly.
Figure 2 plots �gimp(T ) and �himp(T ) as a function of
temperature. On one hand, the vibrational entropy change
for the Si impurity inside the Au crystal is −4.9kB, which
increases the free energy by 26 kJ mol−1 at the eutectic
temperature. The Si impurity solubility will be significantly
overestimated if we ignore the vibrational entropy. On the
other hand, for the Si impurity inside the Au crystal, �Svib is
10kB, corresponding to a free energy decrease of 53 kJ mol−1

at the eutectic temperature. The sign of �Svib is opposite on
each side, because the Si–Si bonding is stiffer than the Au–Au
bonding. (The Debye temperature of Si is 645 K while that of
Au is 165 K [39].) This result emphasizes the importance of
including the vibrational entropy change in computing the free
energy of the solid and the phase diagram.

3.2. Free energy of the liquid alloy

We first compute the Helmholtz free energy difference between
the liquid alloy and the ideal gas at a given temperature using
the adiabatic switching method5. To improve computational
efficiency, a fluid with a purely repulsive (Gaussian) potential
is used as an intermediate reference system during the
switching [34]. To obtain the free energy of the liquid alloy at
this temperature, we add this free energy difference to the free
energy of the two-component ideal gas under a fixed center-of-
mass constraint, which is [36]

Fi.g.(N1, N2) = −N1kBT ln
V

�3
1

− N2kBT ln
V

�3
2

+ kBT ln
V

�3
e

+ kBT ln(N1!N2!) (6)

where V is the volume of the simulation cell, �i =
h/

√
2πmi kBT is the de Broglie wavelength, with i = 1 for

Au and i = 2 for Si. �e = h/
√

2πmekBT and me =
(N1m2

1 + N2m2
2)/(N1m1 + N2m2) is the effective mass for the

constrained degree of freedom. The last term in equation (6)
reflects the configurational entropy of mixing. Once the free
energy at a certain temperature is determined, its temperature
dependence is obtained by reversible scaling [34].

Using the method above, we compute the free energy
of the liquid alloy at 11 different compositions, x =
0, 0.1, 0.2, . . . , 1, and interpolate the values along the x axis
by spline fitting. The numerical error introduced in the spline
fitting may have caused the undulation of the liquidus curve in
the Si-rich region of the phase diagram in figure 1. Figure 3(a)
plots the resulting function G liq(x, T ) at T = 1250 K. The
difference between G liq(x, T ) and the straight line connecting
the free energies of pure Au and pure Si liquids is the free
energy of mixing, which is shown in figure 3(b). The prediction
of the free energy from the MEAM model is in reasonable
agreement with the CALPHAD result [38].

We also compare our model directly to the enthalpy
of mixing and excess free energy from experiments [40],
which are obtained by calorimetric and Knudsen cell methods
respectively, as shown in figure 4. While qualitative
agreements can be observed among MEAM, CALPHAD and
experimental data, notable discrepancies can also be observed,
even though the binary phase diagrams predicted by MEAM
and CALPHAD both agree very well with the experimental
phase diagram. This is because the MEAM potentials for
pure Au and pure Si have ∼15% error in the latent heat (see
appendix A). Therefore, the free energy differences between
solid and liquid phases in the limits of x = 0 and 1 are
incorrectly predicted by MEAM at low temperatures. To
reproduce the experimental phase diagram, the shape of the
liquid free energy curve as a function of x predicted by MEAM
must be different from that predicted by CALPHAD at low
temperatures. To remove this discrepancy, one will have to re-
fit the MEAM potential for pure Au and pure Si to obtain the
latent heat exactly.

5 Because the liquid alloy is at zero pressure, its Gibbs free energy coincides
with its Helmholtz free energy, although this is not the case for the reference
ideal gas system.

5
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Figure 3. (a) The liquid free energy G liq(x, T ) at T = 1250 K.
Circles are simulation results, which are fitted to a spline (solid line).
A straight line connecting the liquid free energy of pure Au and pure
Si is drawn for comparison. (b) The free energy of mixing
Gmix(x, T ) for the liquid phase at T = 1250 K. The predictions from
the MEAM potential is plotted as a thick line, which is the difference
between G liq(x, T ) and the straight line shown in (a). The free
energy obtained from the CALPHAD method [38] is plotted as a thin
line.

3.3. Construction of the binary phase diagram

Given the Gibbs free energies of the three phases, GFCC(x, T ),
GDC(x, T ) and G liq(x, T ), the binary phase diagram is
constructed by drawing common tangent lines between the
three curves at each temperature. An example is given in
figure 5 for T = 700 K.

First, a common tangent line is drawn between
GFCC(x, T ) and G liq(x, T ). The tangent contacts the two free
energy curves at x1 = 0.011 and x2 = 0.225, respectively.
This means that the Au-rich FCC (solid) phase is stable in
the composition range of x ∈ [0, x1]. The mixture of FCC
solid and liquid phase is stable in the composition range of
x ∈ (x1, x2).

Second, a common tangent line is drawn between
G liq(x, T ) and GDC(x, T ). The tangent contacts the two free
energy curves at x3 = 0.251 and x4 ≈ 1, respectively.
This means that the Si-rich DC (solid) phase is stable in the
composition range of x ∈ [x4, 1]. The mixture of DC solid
and liquid phase is stable in the composition range of x ∈

Figure 4. (a) The enthalpy of mixing �Hliq(x, T ) at T = 1373 K
from experiments (circles), MEAM (thick line), and CALPHAD
(thin line). (b) The excess free energy of mixing �GXS

liq (x, T ) at
T = 1685 K from experiments (circles), MEAM (thick line), and
CALPHAD (thin line).

(x3, x4). The liquid phase is stable in the composition range
of x ∈ [x2, x3]. Repeating this procedure for all temperatures
allows us to construct the binary phase diagram shown in
figure 5(b). At the eutectic temperature Te = 629 K, all three
free energy curves share the same tangent line (x2 = x3).6

The tangent line contacts the liquid free energy curve at the
eutectic composition xe = 0.234. The eutectic temperature
and composition of the MEAM model are in good agreement
with the experimental data (634 K and 0.195).

4. Summary

We develop a MEAM gold–silicon potential that is fitted
to the experimental binary phase diagram. The potential
parameters are first fitted to ab initio data of a hypothetical
B1 alloy structure. The parameters are then adjusted to fit
the substitutional impurity energies in the solid phase and the
binary phase diagram. The final potential successfully captures
the eutectic behavior of the gold–silicon binary system.
The eutectic temperature and composition agrees well with
experimental values. The potential is further benchmarked for

6 At T <Te, the liquid free energy curve is entirely above the common tangent
line of the two solid free energy curves. In this case, the liquid phase is unstable
at any composition.
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Figure 5. The common tangent method used to construct the binary
phase diagram from free energy curves. (a) The Gibbs free energy of
the three phases, GFCC(x, T ), GDC(x, T ) and G liq(x, T ), as a
function of the composition x at T = 700 K. All of them are
referenced to the free energies of pure Au liquid and pure Si liquid.
Common tangent lines are drawn between GFCC(x, T ) and
G liq(x, T ) (from x1 = 0.011 to x2 = 0.225), and between G liq(x, T )
and GDC(x, T ) (from x3 = 0.251 to x4 ≈ 1). (b) The binary phase
diagram of the MEAM Au–Si potential. The phase boundaries at
T = 700 K are determined from the data in (a).

other hypothetical structures such as B2 and L12 in appendix B.
The lattice constant, bulk modulus and cohesive energy are all
within 15% of the ab initio results. We expect that the potential
developed here could be used for atomistic simulations of gold-
catalyzed nucleation and growth of silicon nanowires. Because
this potential is mostly fitted to bulk properties, it can be further
improved by fitting to surface and defect properties, which
are also expected to influence the nanowire growth process.
The method developed here for computing the binary phase
diagram can also be used for other binary systems that exhibit
a eutectic behavior and low solid solubility, such as the gold–
germanium and gold–aluminum ones.
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Appendix A. MEAM potentials for pure Au and pure
Si

In the previous work [28], we improved the MEAM potentials
for pure Au and pure Si. We used the second-nearest-neighbor
MEAM model [41] for Au and the original MEAM model [14]
for Si. Without modifying most of the parameters in the
original models, we shift the melting points of pure Au and
pure Si by adjusting the multi-body screening function through
the Cmin parameters and the pair potential function through the
EOS function Eu(r).

In determining the pair potential functions φAu−Au(r)

and φSi−Si(r) of pure Au and pure Si, we use the following
modification of the EOS function:

Eu(r) = −Ec(1 + a∗ + da∗3 + γ a∗4e−λa∗2

/r) exp(−a∗)
(A.1)

where d = 0.05, γ = −0.182 Å, λ = 4.0, and Cmin = 0.8
for pure Au, and d = 0, γ = −0.36 Å, λ = 16.0, and
Cmin = 1.85 for pure Si. The new MEAM model of pure
Au predicts the melting point Tm = 1337 K and the latent
heat L = 14.2 kJ mol−1, which are closer to the experimental
values of 1337.3 K and 12.6 kJ mol−1 than those predicted
by the original MEAM model (Tm = 1120 K and L =
18.2 kJ mol−1). The new MEAM model of pure Si predicts
Tm = 1687 K and L = 43.1 kJ mol−1, which are closer to the
experimental values of 1685 K and 50.2 kJ mol−1 than those
predicted by the original MEAM potential (Tm = 1411 K
and L = 36.8 kJ mol−1). Notice that in this work, we use a
different form of the EOS function to define the Au–Si pair
potential, as given in equation (2).

Appendix B. Further benchmarks

We test the transferability of the Au–Si MEAM potential by
comparing it against ab initio predictions on the energetics and
elastic constants of several other hypothetical solid structures.
Table B.1 presents the equilibrium lattice constants, cohesive
energy, and elastic constants of B2 and L12 structures. The
results for the B1 structure are also included. The values of
a, B and Ec for the B1 structure are used in the fitting but
the values of C11 and C44 are not. We intentionally fit the
equilibrium lattice constant of the B1 structure to a higher
value of a = 5.400 Å than the adjusted ab initio data (5.184 Å),
to get better agreement with experiments on the binary phase
diagram. A reasonable binary phase diagram can also be
obtained by lowering the formation energy of the B1 structure
instead, and using a large γ in equation (2). However, we do
not take this approach because it changes the elastic constants
of the B2 and L12 structures significantly. For all three phases,
the MEAM predictions of a, B , Ec, and C11 are within 15%
of ab initio data. Notice that the ab initio model predicts
C44 < 0 for all three crystal structures, indicating that they
are mechanically unstable. In comparison, the MEAM model
predicts a small but positive C44, meaning that they may be
metastable in the MEAM model.

7
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Table B.1. Comparison between MEAM and ab initio predictions
for the energy and elastic properties of B1, B2 and L12 structures of
Au–Si. a is the equilibrium lattice constant, B is the bulk modulus,
Ec is the cohesive energy, and C11 and C44 are cubic elastic
constants. The MEAM data should be compared with ab initio
(DFT/LDA) results that have been adjusted for known differences
from experimental values for pure elements.

Structure Properties DFT/LDA
DFT/LDA
(adjusted) MEAM

B1 a (Å) 5.161 5.184 5.400
B (GPa) 129 127 127
Ec (eV) 5.057 4.155 4.155
C11 (GPa) 310 303 320
C44 (GPa) −20 −35 15

B2 a (Å) 3.202 3.226 3.370
B (GPa) 130 128 114
Ec (eV) 4.867 3.966 3.844
C11 (GPa) 101 101 88
C44 (GPa) −3 −18 0.7

L12 a (Å) 4.041 4.055 4.192
B (GPa) 156 152 140
Ec (eV) 4.624 3.945 4.022
C11 (GPa) 170 159 142
C44 (GPa) 11 −1 19
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